

Center for Biofilm Engineering

Standard Methods for Biofilm Testing:

Progress and future directions

Paul Sturman, Ph.D. Industrial Coordinator and Research Professor Center for Biofilm Engineering

Message and Purpose

- Requirements of a standard method
- ASTM biofilm methods
- Adaptability of methods
- Needs for future methods

Collaboration

EPA

Biological & Economic Analysis Division Microbiology Laboratory Branch (MLB)

- Marc Rindal
- Stephen Tomasino
- Charles Odeyale

Attributes of a standard method: The seven R's

- Relevance (lab outcome ~ field outcome)
- Reasonableness (expense, lab techniques)
- Resemblance (controls similar between exps.)
- Repeatability (within lab denoted SD_r)
- Ruggedness (unaffected by slight changes)
- Responsiveness (detects changes of interest)
- Reproducibility (among labs denoted SD_R)

Attributes of a standard method: The seven R's

- Relevance (lab outcome ~ field outcome)
- Reasonableness (expense, lab techniques)
- Resemblance (controls similar between exps.)
- Repeatability (within lab variation SD_r)
- Ruggedness (unaffected by slight changes)
- Responsiveness (detects changes of interest)
- Reproducibility (var. among labs SD_R)

Relevance: Rotating Disk Reactor as a model toilet bowl

Top

3.0"

Field validation of biofilm growth method

Single Tube Method – Inter Laboratory Study Results

Repeatability Reproducibility

Disinfectant	Conc.	Mean LR	SD _r	SD _R
Sodium hypochlorite	High	3.89	1.31	1.40
	Low	2.32	0.75	0.89
Phenol	High	3.78	0.58	1.35
	Low	3.32	1.35	1.35
Quat-alcohol	High	4.58	1.45	1.67
	Low	2.71	0.73	0.92

Responsive to Disinfectant Concentration

Standarized biofilm methods

Rotating Disk Reactor

Moderate shear
- CSTR ASTM
Method E2196

Drip Flow Biofilm Reactor

Low shear
- Plug flow ASTM
Method E2647

CDC Biofilm Reactor

High shear
- CSTR ASTM
Method E2562

MBEC Assay

Gentle shear
- Batch ASTM
Method E2799

ASTM Biofilm Methods Timeline

2002 Rotating Disk Reactor E2196 2007 CDC Reactor E2562 2008 Drip Flow E2647 2011 MBEC E2799 2013
Single Tube
Single Tube
Disinfection
E2871

Single tube disinfection method

Modifying a Standard Method

Potential Adaptations:

- Other species or mixed culture
- Temperature
- Growth Media
- Coupon Surface

Potential Biofilm Label Claims

- Reduces biofilm bacteria (low level of efficacy, for instance 2 logs)
- Kills biofilm bacteria (high level of efficacy, for instance 5 logs)
- Prevents bacterial biofilm
- Removes bacterial biofilm

Treatment Flow Cell

Advantage: Realtime, microscopybased analysis of biofilm accumulation.

Limitation: Must use CDC reactor coupon

Sodium Bicarbonate in Treatment Flow Cell

Chlorine in Treatment Flow Cell

Alternative Removal Assays

- Microscopy-based Assays
- Dry Weight
- Total Protein
- Total Carbohydrate
- Total Organic Carbon

Assessing Removal Assays

Table 1 Summarization of the various factors influencing each quantification protocol.

Compared to SEM	← Accuracy	Repeatability	Time	Cost
XTT	+++	++++	+	++
Crystal Violet	+	++++	++	+
CFU	++	++++	+++	++
DNA	_	+++	++	+++
Amplification	_	++	+++	++++
BCA Protein	+	+	+	+
Dry Cell Weight	_	++	++	+

© 2011 ISHAM, Medical Mycology,

Comparative analysis of Candida biofilm quantitation assays

HEATHER T. TAFF*, JENIEL E. NETT*,‡ & DAVID R. ANDES*,†,‡

Departments of *Microbiology and Immunology, and †Medicine, University of Wisconsin, and ‡William S. Middleton Veterans Hospital, Wisconsin, USA

Acknowledgments

- CBE Standard Methods Team
- Single tube method development by Marc Rindal (EPA OPP MLB)
- EPA Contract EP-W-08-014
- ASTM International

